Comparison of Deep Learning Architectures for Dimensionality Reduction of 3D Flow Fields of a Racing Car

Author:

Reck Michaela,Hilbert Marc,Hilhorst René,Indinger Thomas

Abstract

<div class="section abstract"><div class="htmlview paragraph">In motorsports, aerodynamic development processes target to achieve gains in performance. This requires a comprehensive understanding of the prevailing aerodynamics and the capability of analysing large quantities of numerical data. However, manual analysis of a significant amount of Computational Fluid Dynamics (CFD) data is time consuming and complex. The motivation is to optimize the aerodynamic analysis workflow with the use of deep learning architectures. In this research, variants of 3D deep learning models (3D-DL) such as Convolutional Autoencoder (CAE) and U-Net frameworks are applied to flow fields obtained from Reynolds Averaged Navier Stokes (RANS) simulations to transform the high-dimensional CFD domain into a low-dimensional embedding. Consequently, model order reduction enables the identification of inherent flow structures represented by the latent space of the models. The resulting data from the 3D-DL study are compared to a traditional dimensionality reduction method, namely Proper Orthogonal Decomposition (POD). Flow field features are examined by using methods of local feature importance, aiming for awareness of predominant fluidic phenomena. We show that our data-driven models capture aerodynamically relevant zones around the racing car. 3D-DL architectures can represent complex nonlinear dependencies in the flow domain. The U-Net network demonstrates an <i>R</i><sup>2</sup> reconstruction accuracy of 99.94%, outperforming the results achieved from linear POD with an <i>R</i><sup>2</sup> of 99.57%. Efficiently handling numerous CFD simulations leads to improved post-processing and an accelerated investigation procedure for future aerodynamic development. Finally, the discovered findings provide further knowledge for the serial development to increase efficiency, thereby extending, e.g., the range of electric vehicles.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3