Potential for Particulate Reduction by Use of eFuels in MPFI Engines

Author:

Schurl Sebastian1,Batalha Guilherme1,Kupper Martin1,Schmidt Stephan1,Krasa Helmut1

Affiliation:

1. Graz University of Technology

Abstract

<div class="section abstract"><div class="htmlview paragraph">Currently, emission regulations for the LVs using standard spark ignited ICEs considering only gaseous pollutants, just as CO, HC and NOx. Following the upcoming legislation for personal vehicles sector, the LVs might also include limits of PN and PM. Regarding fuel injection strategies, the MPFI which was previously excluded from particulate control will be incorporated into the new regulation [<span class="xref">1</span>]. In terms of social harm, there will be a necessity to reduce engine particulate emissions, as they are known for being carcinogenic substances [<span class="xref">2</span>, <span class="xref">3</span>, <span class="xref">4</span>]. Generally, the smaller the particulate diameter, the more critical are the damages for human health therefore, the correct determination of PN and particulate diameter is essential. Beside future challenges for reducing and controlling particulates, the reduction of fossil fuel usage is also an imminent target, being the replacement by eFuels one of the most promising alternatives. Therefore, the particulate generation behavior of eFuels and the influence of their novel fuel composition need to be researched. Hence, gas chromatography of five different eFuel blends was carried out in order to identify precisely the fuel composition and subsequentially correlate it with particulate emission behavior. Thereafter, the impacts of eFuel functional groups on PM/PN were studied using a motorcycle equipped with a two-cylinder engine by two different experiments. First, the standard homologation test cycle WMTC was selected for evaluating the total PM/PN emitted. Then, particulate size distribution at steady state condition was investigated to determine soot composition at two different operational load points of the vehicle, utilizing a scanning mobility particulate sizer (SMPS). By adopting this approach, it becomes possible to develop strategies for reducing particulate emissions by taking into account fuel composition and a comprehensive analysis of particle size distribution.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3