A Kinetic Modeling and Engine Simulation Study on Ozone-Enhanced Ammonia Oxidation

Author:

Zhang Zhenyingnan1,Li Ang1,Li Zhuohang1,Zhu Lei1,Huang Zhen1

Affiliation:

1. Shanghai Jiao Tong University

Abstract

<div class="section abstract"><div class="htmlview paragraph">Ammonia has attracted the attention of a growing number of researchers in recent years. However, some properties of ammonia (e.g., low laminar burning velocity, high ignition energy, etc.) inhibit its direct application in engines. Several routes have been proposed to overcome these problems, such as oxygen enrichment, partial fuel cracking strategy and co-combustion with more reactive fuels. Improving the reactivity of ammonia from the oxidizer side is also practical. Ozone is a highly reactive oxidizer which can be easily and rapidly generated through electrical plasma and is an effective promoter applicable for a variety of fuels. The dissociation reaction of ozone increases the concentration of reactive radicals and promotes chain-propagating reactions. Thus, obtaining accurate rate constants of reactions related to ozone is necessary, especially at elevated to high pressure range which is closer to engine-relevant conditions. In present work, rate constants of ozone dissociation reaction were recalculated and extended to cover engine-relevant pressure conditions based on multiconfigurational calculation results in literature. A kinetic model was developed based on calculated results in present work and data taken from literature. This model was further used for numerical simulations of ozone-enhanced ammonia oxidation at pressures of 1-5 MPa and temperatures ranging from 700-1000 K. Kinetic analysis based on Chemkin simulation was performed to investigate and evaluate the effect of ozone addition. Engine simulation was also performed to investigate the feasibility of ozone-enhanced ammonia oxidation in engine applications. Present work investigates a different route of enhanced combustion of ammonia and will contribute to the future application of ammonia in engines.</div></div>

Publisher

SAE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3