An Investigation on Exhaust Pulse Characteristics of Asymmetric Twin-Scroll Turbocharged Heavy-Duty Diesel Engine

Author:

Wu Liangqin1,Jin Jianjiao1,Wang Jie2,Zhang Chenyun3

Affiliation:

1. Shazhou Professional Institute of Technology, China

2. Kaishi Faurecia Aftertreatment Control Technologies Co., Ltd, China

3. Wuxi Vocational Institute of Arts & Technology, China

Abstract

<div>The shape and energy distribution characteristics of exhaust pulse of an asymmetric twin-scroll turbocharged engine have a significant impact on the matching between asymmetric twin-scroll turbines and engines, as well as the matching between asymmetric twin scrolls and turbine wheels. In this article, the exhaust pulse characteristics of an asymmetric twin-scroll turbocharged engine was studied. Experiments were conducted on a turbine test rig and an engine performance stand to determine the operation rules of exhaust pulse strength, turbine flow parameters, turbine isentropic energy, and turbine efficiency. The results showed that the exhaust pulse strength at the inlets of both the small and large scrolls continuously decreased with the increase of engine speed. And the flow parameters at the inlets of the small and large scrolls exhibited a “ring” or “butterfly” shape with the change of expansion ratio depending on the pressure deviation of the extreme points at the troughs on both sides of the “secondary peak” of the exhaust pressure pulse, respectively. Besides, the distribution trend of turbine isentropic power was consistent with the trend of exhaust pressure pulse at the inlets of the small and large scrolls. Furthermore, when opening the balance valve, it caused the appearance of “concave” and “convex” features near the “main peak” and “secondary peak” of the turbine isentropic power pulses, respectively. Finally, as the engine speed increased, the fluctuation of turbine instantaneous efficiency gradually decreased. When calculating the instantaneous efficiency of the turbine, the influence of the rotor’s rotational inertia needs to be considered, otherwise, there may be a false phenomenon of exceeding 100% efficiency.</div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3