Experimental and Numerical Investigations of Emission Characteristics from Diesel-Ammonia-Fueled Industry Engines

Author:

Imamori Yusuke1,Takahashi Tomohiro1,Ueda Hiroyuki1,Yamada Satoshi1,Tanaka Takafumi2,Kogure Ryosuke2

Affiliation:

1. Mitsubishi Heavy Industries, Ltd.

2. Mitsubishi Heavy Industries Engine &Turbocharger, Ltd.

Abstract

<div class="section abstract"><div class="htmlview paragraph">Combustion and emission characteristics of diesel- ammonia-fueled internal combustion engines were obtained by simulation and experiment with a multi- cylinder industry engine to reduce nitrous oxide, N2O, emission which has high global warming potential. The test engine was based on 4-stroke-cycle diesel engine with common rail injection system and ammonia gas was introduced in intake air. Simulation result by combustion CFD with detailed chemistry showed N2O remains at unburned ammonia-air mixture region, and simultaneous reduction of both N2O and unburned ammonia has been expected in high in-cylinder temperature. The test result showed unburned ammonia reduced along with increased in-cylinder temperature in high equivalence ratio and advanced injection timing conditions. Also, N2O reduced along with increased in-cylinder temperature in the most cases. 82% reduction of greenhouse gas was achieved compared with conventional diesel engine by applying 94% of ammonia in total fuel energy at full load condition, and it turned out that further reduction of unburned ammonia and NOx were required.</div></div>

Publisher

Society of Automotive Engineers of Japan

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3