Assessment of Acclimation of 5th Percentile Female and 50th Percentile Male Volunteer Kinematics in Low-Speed Frontal and Frontal-Oblique Sled Tests

Author:

Chan Hana, ,Albert Devon,Gayzik F Scott,Kemper Andrew R, , ,

Abstract

In order to accurately represent the response of live occupants during pre-crash events and frontal crashes, computational human body models (HBMs) that incorporate active musculature must be validated with appropriate volunteer data that represents a wide range of demographic groups and potential crash conditions. The purpose of this study was to quantify and compare occupant kinematic responses for unaware (relaxed) small female and midsize male volunteers during low-speed frontal and frontal-oblique sled tests across multiple test conditions, while recognizing, assessing, and accounting for potential acclimation effects due to multiple exposures. Six 5th percentile female and six 50th percentile male volunteers were exposed to multiple low-speed frontal and frontal-oblique sled tests on two separate test days. Volunteers experienced one test orientation and two pulse severities (1 g and 2.5 g) on each test day. A Vicon motion capture system was used to quantify the three-dimensional (3D) kinematics of the volunteers. Peak forward excursions of select body locations were compared within a test day and between test days for the same test condition to determine if and how acclimation occurred. Differences between demographic groups were also compared after accounting for any observed acclimation. Acclimation was not observed within a test day but was observed between test days for some demographic groups and some test conditions. In general, head, neck, and shoulder responses were affected, but the elbow, hip, and knee responses were not. Males generally moved farther forward compared to females during the frontal tests, but both groups moved forward similarly during the frontal-oblique tests. Overall, this study provides new female and male biomechanical data that can be used to further develop and validate HBMs that incorporate active musculature in order to better understand and assess occupant response and injury risk in pre-crash events and frontal crashes.

Publisher

SAE International

Subject

Mechanical Engineering,Safety Research,Safety, Risk, Reliability and Quality,Human Factors and Ergonomics,Mechanical Engineering,Safety Research,Safety, Risk, Reliability and Quality,Human Factors and Ergonomics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3