Water Intrusion in Automotive Door Latches Using SPH Method

Author:

Kaushik Achala,Krishnamurthy Harish,Gajendra Harish,Calamaco Eli

Abstract

<div class="section abstract"><div class="htmlview paragraph">An automotive door latch that functions manually or electronically is a vital component of a door closure system. It primarily aims to provide security of the occupants by securing the door system by ensuring timely locking and unlocking of the doors. A wide range of factors like safety, ergonomics, and security influence the development of these latches to eliminate safety. With the growing trend and advancements, automotive electronics is becoming more complex and prevalent. Hence, any exposure of electrical/electronic components to water make them susceptible to short circuits, corrosion etc., thereby may make it the functionality of systems and increasing the chances of failure in these devices. Intrusion of water possible into the latch system can be disastrous depending on the climatic conditions. Stringent safety criteria have given rise to unconventional test methods that are time-consuming and hence necessitate virtual validation techniques. Virtual validation becomes a viable option and with proper correlation work it helps to address these types of problems at low cost and in early stages of product development The latch is subjected to an impact by a jet of water, modelled using Smoothened Particle Hydrodynamics (SPH) technique. SPH is a mesh-free method used to simulate fluid flow and has found its application in many engineering problems &amp; fluid structure interaction (FSI) models. Since it can handle problems involving free surfaces, deformable boundaries, moving interfaces, extremely large deformation, and crack propagation, this was found to be an ideal technique for simulation. Water is made to impinge on the latch assembly and the/those water accumulated regions observed in the simulation were compared with the test results which are found to have good correlation. A design modification was suggested to prevent/minimize water ingression into the system which was further analyzed and proved to be efficient based on the FSI methodology.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3