Prediction of Thermodynamic and Viscoelastic Properties of Rubber Using Molecular Simulations

Author:

Pahari Swagata,Ghosh Prasenjit,Mukhopadhyay Rabindra

Abstract

<div class="section abstract"><div class="htmlview paragraph">Rubber is one of the most versatile materials and finds numerous applications in diverse areas. The application of rubber is mostly determined by its physico-mechanical and viscoelastic properties. Rubber properties play an essential role in performing its functional requirement, which is crucial for designing a good rubber product. Therefore, the estimation and prediction of the properties of rubber and rubber composites are central to the material developers. However, many factors, such as temperature, environmental effects, and rubber formulation can influence rubber properties and make it highly non-linear. Computer simulation plays a vital role in our understanding of complex dynamics in rubber materials and provide structure-property relationship at the nanoscopic and microscopic level. An understanding of this relationship can reduce the expensive trial experiments and provide a benchmark for novel material design. Additionally, simulations at atomic and molecular levels provide the mechanism of action and the underlying physics which finally helps in designing of new materials. In the present work, all atomistic Molecular Dynamics (MD) simulation technique is utilized to predict various thermodynamic and viscoelastic properties of raw rubbers. The effect of key structural factors, that govern the properties of rubber at the molecular level, is examined using MD. In this work, we have developed the classical atomistic models for several raw rubbers and implemented methodologies for calculating their properties from MD simulations. The predicted properties using our model and methodologies are in close agreement with the experimental and available literature values. Our results establish that MD simulations are an effective tool to predict quantitatively thermodynamic and viscoelastic properties of rubber. Eventually, the same technique can be used to predict properties for crosslinked rubber, rubber composites, blends, and silica/carbon black reinforced rubbers and thus, designing a novel rubber material.</div></div>

Publisher

SAE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3