A Comprehensive Exergy Analysis of CI Engines with Hydrogen Injection for Enhanced Performance

Author:

V Praveena1,Stephen Deborah1,R Rajarajeswari1,J S Phavan Kumaar1

Affiliation:

1. SRM Institute of Science and Technology

Abstract

<div class="section abstract"><div class="htmlview paragraph">This study aims to investigate the effect of hydrogen injection on the performance and emissions of a compression ignition (CI) engine running on biodiesel. The tests are performed on a single-cylinder CI engine cooled by water, operating at a consistent speed of 1500 rpm. The torque load range varies from 0.01 kg to 18 kg, and hydrogen injection rates range from 4 litres per minute (lpm) to 10 lpm. The study focuses on evaluating the impact of hydrogen injection on various performance metrics, including exergetic efficiency, brake thermal efficiency, brake specific fuel consumption (BSFC), cylinder pressure, heat release rate, and exhaust gas temperature. The findings reveal that hydrogen injection significantly improves the performance of the biodiesel-run CI engine. The highest improvement is observed at a hydrogen injection rate of 10 lpm, which results in a 5% decrease in BSFC, a 6% increase in brake thermal efficiency, and an exergetic efficiency of 25.3%. Furthermore, exergy analysis is conducted to assess the contribution of different components, such as shaft work, cooling water, exhaust gas availability, and entropy generation. The results demonstrate that hydrogen injection can be an effective strategy for enhancing the performance and sustainability of CI engines powered by biodiesel. Overall, this research provides information about the potential advantages of hydrogen injection for CI engines powered by biodiesel. The findings of this study will be useful for future investigations and creation of sustainable engine technologies.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3