Experimental Investigation on Performance and Emission Characteristics of Karanja Oil Biodiesel with Di-Ethyl Ether, Ethylhexyl Nitrate and Methanol

Author:

M Boopathi1,Saminathan Sathiskumar1,T Karthi1,S R Dharshana1,U Liniyth Kumar1,P Rahul1

Affiliation:

1. Kongu Engineering College

Abstract

<div class="section abstract"><div class="htmlview paragraph">Air pollution is one of the biggest issues facing the planet today. One of the major sources of environmental pollution is car emissions. Reduced use of fossil fuel signals the need to switch to other fuels. Every nation in the world is making numerous efforts to reduce the pollution that vehicles are responsible for. Utilizing alternative fuels effectively can reduce air pollution. Decreased fuel consumption results from increased use of biodiesel. For this study, biodiesel made from karanja oil was combined with additives like methanol, diethyl ether, and ethyl hexyl nitrate (EHN). B10, B15, and B20 blends are created in various compositions. For comparison, several fuel attributes for the aforementioned mixes and diesel were discovered. Biodiesel’s viscosity has been significantly lowered to improve mixture preparation and has a higher calorific value than base fuel. The testing for the aforementioned mixes was carried out on a VCR-style CI engine. Analysis was done on the performance parameters heat release rate, brake thermal efficiency, brake power, and indicated power. B10 has a little greater brake thermal efficiency than diesel fuel (32.57% vs. 31.63%, respectively). The effects of different pollutants, such as HC, CO, CO<sub>2</sub>, and NOx emissions, were compared to diesel fuel emissions. Compared to pure diesel, there is a reduction in HC, CO, and smoke emissions. However, NOx is more abundant than pure diesel.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3