Advanced Biomass Conversion: Sustainable e-Methanol Production with Enhanced CO <sub>2</sub> Utilization

Author:

Fernandes Renston Jake1,Nguyen Ducduy2,Shakeel Mohammad Raghib1,Turner James W.G.1

Affiliation:

1. King Abdullah Univ of Science & Tech

2. Norwegian Univ of Science and Technology

Abstract

<div class="section abstract"><div class="htmlview paragraph">Amid escalating concerns over climate change and emissions, this study presents a novel approach to develop sustainable fuels, leveraging advanced process modeling that uses waste CO<sub>2</sub> streams from the biological ethanol fermentation process to produce e-methanol. Using Aspen Plus software, this research focuses on the conversion of biomass such as sugar cane and sugar beet to reduce reliance on fossil fuels and fortify energy resilience in a sustainable manner. In the first phase, bagasse, a byproduct of sugar production that is rich in carbon is used as a precursor for gasification and as a fuel to generate high-pressure steam. Oxygen obtained from electrolysis of water using renewable energy is used to preheat the biological exothermic fermentation phase. The CO<sub>2</sub> captured during the fermentation phase is mixed with hydrogen obtained from the electrolysis process to synthesize e-methanol. Lignin, a byproduct of second-generation bioethanol, and surplus bagasse are identified and converted into ethanol and e-methanol, respectively, optimizing the use of CO<sub>2</sub> from fermentation and O<sub>2</sub> from electrolysis. Lastly, gasification of the carbon-rich bagasse serves to further enhance methanol production, culminating in the generation of enriched e-methanol. This results in enhanced bioenergy, bio-carbon recovery and consequently reduced fossil CO<sub>2</sub> emissions, offering a holistic CO<sub>2</sub> and biomass management solution. This research introduces a groundbreaking approach to sustainable fuel production, significantly advancing over traditional methods by implementing a closed carbon cycle that fully utilizes every carbon atom from biomass feedstock. This contrasts sharply with conventional practices where carbon dioxide is often released as a byproduct, aggravating greenhouse gas emissions. A key innovation is the waste-to-value conversion, where byproducts like bagasse and lignin are transformed into valuable fuel sources, adding a new dimension of resource optimization absent in traditional fuel production. The environmental impact is profound, with a potential substantial reduction in greenhouse gas emissions, particularly in the transport sector, positioning this method as a sustainable alternative aligned with global environmental goals. Economically, it promises enhanced viability through improved resource utilization and efficiency, presenting a holistic solution that addresses both energy needs and environmental concerns, a significant leap forward from the limitations of traditional fossil fuel-based methods.</div></div>

Publisher

SAE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3