STEAM & MoSAFE: SOTIF Error-and-Failure Model & Analysis for AI-Enabled Driving Automation

Author:

Czarnecki Krzysztof1,Kuwajima Hiroshi2

Affiliation:

1. University of Waterloo

2. DENSO CORPORATION

Abstract

<div class="section abstract"><div class="htmlview paragraph">Driving Automation Systems (DAS) are subject to complex road environments and vehicle behaviors and increasingly rely on sophisticated sensors and Artificial Intelligence (AI). These properties give rise to unique safety faults stemming from specification insufficiencies and technological performance limitations, where sensors and AI introduce errors that vary in magnitude and temporal patterns, posing potential safety risks. The Safety of the Intended Functionality (SOTIF) standard emerges as a promising framework for addressing these concerns, focusing on scenario-based analysis to identify hazardous behaviors and their causes. Although the current standard provides a basic cause-and-effect model and high-level process guidance, it lacks concepts required to identify and evaluate hazardous errors, especially within the context of AI.</div><div class="htmlview paragraph">This paper introduces two key contributions to bridge this gap. First, it defines the SOTIF Temporal Error and Failure Model (STEAM) as a refinement of the SOTIF cause-and-effect model, offering a comprehensive system-design perspective. STEAM refines error definitions, introduces error sequences, and classifies them as error sequence patterns, providing particular relevance to systems employing advanced sensors and AI. Second, this paper proposes the Model-based SOTIF Analysis of Failures and Errors (MoSAFE) method, which allows instantiating STEAM based on system-design models by deriving hazardous error sequence patterns at module level from hazardous behaviors at vehicle level via weakest precondition reasoning. Finally, the paper presents a case study centered on an automated speed-control feature, illustrating the practical applicability of the refined model and the MoSAFE method in addressing complex safety challenges in DAS.</div></div>

Publisher

SAE International

Reference55 articles.

1. International Organization for Standardization 2021

2. SAE 2021

3. International Organization for Standardization 2018

4. Salay , R. , and Czarnecki , K. 2018

5. SAE 2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3