Damping Force Optimal Control Strategy for Semi-Active Suspension System

Author:

Zhao Jian1,Li Wanting1,Zhu Bing1,Chen Zhicheng1,Ding Shuwei,Li Junwei,Hao Wenquan,Zhang Yong

Affiliation:

1. Jilin University

Abstract

<div class="section abstract"><div class="htmlview paragraph">Semi-active suspension system (SASS) could enhance the ride comfort of the vehicle across different operating conditions through adjusting damping characteristics. However, current SASS are often calibrated based on engineering experience when selecting parameters for its controller, which complicates the achievement of optimal performance and leads to a decline in ride comfort for the vehicle being controlled. Linear quadratic constrained optimal control is a crucial tool for enhancing the performance of semi-active suspensions. It considers various performance objectives, such as ride comfort, handling stability, and driving safety. This study presents a control strategy for determining optimal damping force in SASS to enhance driving comfort. First, we analyze the working principle of the SASS and construct a seven-degree-of-freedom model. Next, the damping force optimal control strategy is designed by comprising of the Genetic Algorithm (GA) and the Linear Quadratic Regulator (LQR). The cost function, which provides a quantitative evaluation of the controlled vehicle's driving comfort performance, is constructed by calculating the root mean square value of the body's vertical acceleration, suspension dynamic deflection, and wheel dynamic deformation. Based on this evaluation, we utilize the LQR to convert the damping force control problem of the SASS into a multi-objective optimal control problem. At the same time, the GA is used to comprehensively optimize weighted coefficients of the cost function, and successfully achieve the damping force optimal control for SASS. Finally, we constructed a joint simulation platform using CarSim and MATLAB/Simulink to evaluate and validate. The simulation results demonstrate the SASS’ optimal damping force control strategy could considerably enhance the vehicle ride comfort under various operating conditions comparing with the passive suspension.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3