Optimizing Fused Deposition Modeling Process Parameters for Enhanced Build Time and Mechanical Strength

Author:

EL Azzouzi Adil1,Zaghar Hamid2,Ziat Abderazzak1,Larbi Lasri1

Affiliation:

1. Moulay Ismail University, Department of Mechanics and Integr

2. Sidi Mohammed Ben Abdellah University, Mechanical Engineerin

Abstract

<div class="section abstract"><div class="htmlview paragraph">In this study, we investigate the optimization of additive manufacturing (AM) parameters using a bi-objective optimization approach through the non-dominated sorting genetic algorithm II (NSGA-II). The objectives are to minimize build time and maximize mechanical strength. Experimental evaluations are conducted on various process parameters, including layer thickness, build orientation, and infill density, with a focus on their impact on build time and mechanical properties. Optimal parameter combinations, such as the lowest layer thickness, vertical build orientation, and relatively low fill density, are identified for maximizing tensile strength while minimizing build time. The consistency between experimental results and those obtained through NSGA-II validation validates the reliability of the optimization approach. Overall, this study contributes to the advancement of AM by providing insights into efficient parameter optimization strategies for enhancing both efficiency and performance in extrusion-based processes.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3