Strategies to Reduce Higher Unburned Hydrocarbon and Carbon Monoxide Emissions in Reactivity Controlled Compression Ignition

Author:

Tripathi Saurabh1,Krishnasamy Anand2

Affiliation:

1. IIT Madras

2. Indian Institute of Technology - Madras

Abstract

<div class="section abstract"><div class="htmlview paragraph">Reactivity Controlled Compression Ignition (RCCI) is a promising, high-efficiency, clean combustion mode for diesel engines. One of the significant limitations of RCCI is its higher unburned hydrocarbon (HC) and carbon monoxide (CO) emissions compared to conventional diesel combustion. After-treatment control of HC and CO emissions is difficult to achieve in RCCI because of lower exhaust gas temperatures associated with the low-temperature combustion (LTC) mode of operation<b>.</b> The present study involves combined experimental and computational fluid dynamic (CFD) investigations to develop the most effective HC and CO control strategy for RCCI. A production light-duty diesel engine is modified to run in RCCI mode by introducing electronic port fuel injection with the replacement of mechanical injectors by the CRDI system. Experimental data were obtained using diesel as HRF (High reactive fuel) and gasoline as LRF (low reactive fuel). The combustion simulation was performed using the CONVERGE 3D CFD tool. A reduced PRF mechanism was used where iso-octane represents gasoline and n-heptane as diesel. After validation of engine combustion, performance, and emission parameters, parametric investigations were carried out to investigate the effects of HRF's start of injection timing, premixed energy share, and intake charge temperature on combustion and exhaust emissions. The results obtained from both CFD and experiment show that the start of injection and intake charge temperature significantly influence combustion phasing, while the premixed ratio controls mixture reactivity and combustion quality. The blending ratio of high HRF to LRF governs reactivity stratification, which controls the magnitude of low and high-temperature heat release, combustion phasing and combustion duration. Controlling the amount of LRF and HRF in direct injection (DI) allows for shifting the heat release rate, which modifies combustion phasing and rate of pressure rise. Multiple injection strategies using double pulse helped reduce CO formation and achieve better control over combustion parameters with improved efficiency. By varying IVC temperature, optimizing SOI timing using a double injection strategy up to 18.57%, 25.5% reduction in CO and 93.68% drop in HC emissions, 3.7% reduction in soot are obtained in RCCI compared to the baseline case.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3