Modeling and Analysis of the Hydrogen Production via Steam Reforming of Ethanol, Methanol, and Methane Fuels

Author:

Hariharan Deivanayagam1,Chhatija Harish1,Brown Jonathan1,Gundlapally Santhosh1

Affiliation:

1. Gamma Technologies LLC

Abstract

<div class="section abstract"><div class="htmlview paragraph">The global transition to alternative power sources, particularly fuel cells, hinges on the cost-effective production and distribution of hydrogen fuel. While green hydrogen produced through water electrolysis using renewable energy sources holds immense promise, it currently falls short of meeting the burgeoning demand for hydrogen. To address this challenge, alternative methods, such as steam reforming and partial oxidation of hydrocarbon fuels with integrated carbon capture, are poised to bridge the gap between supply and demand in the near to midterm. Steam reforming of methane is a well-established technology with a proven track record in the chemical industry, serving as a dependable source of hydrogen feedstock for decades. However, to meet the demand for efficient hydrogen storage, handling, and onboard reforming, researchers are increasingly exploring liquid hydrocarbon fuels at room temperature, such as methanol and ethanol. In this work, we have developed reformer models for ethanol, methanol, and methane within the GT-SUITE software, drawing on data from the existing body of research. We examine fuel conversion and hydrogen yield under varying conditions, including different feed temperatures, flow rates, and catalyst loadings. These reactor models hold the potential for seamless integration into system-level models, designed to investigate onboard fuel reforming, startup and shutdown procedures, carbon capture, and more.</div></div>

Publisher

SAE International

Reference33 articles.

1. Global Hydrogen Review 2022 n.d. https://www.iea.org/ https://iea.blob.core.windows.net/assets/c5bc75b1-9e4d-460d-9056-6e8e626a11c4/GlobalHydrogenReview2022.pdf

2. Zhang , M. and Yang , X. The Regulatory Perspectives to China’s Emerging Hydrogen Economy: Characteristics, Challenges, and Solutions Sustainability 14 15 2022 9700

3. Production of hydrogen - U.S. Energy Information Administration (EIA) n.d. https://www.eia.gov/energyexplained/hydrogen/production-of-hydrogen.php

4. Hydrogen Production: Natural Gas Reforming n.d. Energy.gov https://www.energy.gov/eere/fuelcells/hydrogen-production-natural-gas-reforming#:~:text=In%20steam%2Dmethane%20reforming%2C%20methane

5. Scheiblehner , D. , Antrekowitsch , H. , Neuschitzer , D. , Wibner , S. et al. Hydrogen Production by Methane Pyrolysis in Molten Cu-Ni-Sn Alloys Metals 13 7 2023 1310

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and analysis of direct internal reforming in ethanol-fueled SOFC;Emergency Management Science and Technology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3