A Bi-Level Optimization Approach for Eco-Driving of Heavy-Duty Vehicles

Author:

Zhu Jiamin1,Michel Pierre1,Zonetti Daniele1,Sciarretta Antonio1

Affiliation:

1. IFP Energies Nouvelles

Abstract

<div class="section abstract"><div class="htmlview paragraph">With the increase of heavy-duty transportation, more fuel efficient technologies and services have become of great importance due to their environmental and economical impacts for the fleet managers. In this paper, we first develop a new analytical model of the heavy-truck for its dynamics and its fuel consumption, and valid the model with experimental measurements. Then, we propose a bi-level optimization approach to reduce the fuel consumption, thus the <i>CO</i><sub>2</sub> emissions, while ensuring several safety constraints in real-time. Numerical results show that important reduction of the fuel consumption can be achieved, while satisfying imposed safety constraints.</div></div>

Publisher

SAE International

Reference30 articles.

1. European Environment Agency 2021

2. Gustavo R. da Silva Gonçalves and Lazar Mircea Long Hauling Eco-Driving: Heavy-Duty Trucks Operational Modes Control with Integrated Road Slope Preview 2022 European Control Conference (ECC) 1752 1758 2022

3. Daun Thomas J. , Braun Daniel G. , Frank Christopher , Haug Stephan , and Lienkamp Markus Evaluation of Driving Behavior and the Efficacy of a Predictive Eco-Driving Assistance System for Heavy Commercial Vehicles in a Driving Simulator Experiment 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013) 2379 2386 IEEE 2013

4. Sharma , N.K. , Hamednia , A. , Murgovski , N. , Gelso , E.R. et al. Optimal Eco-Driving of a Heavy-Duty Vehicle Behind a Leading Heavy-Duty Vehicle IEEE Transactions on Intelligent Transportation Systems 22 12 2020 7792 7803

5. Hof , T. , Conde , L. , Garcia , E. , Iviglia , A. et al. A State of the Art Review and User’s Expectations European Commission ecoDriver Project 2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3