Spatial Learning Drives Rapid Goal Representation in Hippocampal Ripples without Place Field Accumulation or Goal-Oriented Theta Sequences

Author:

Pfeiffer Brad E.ORCID

Abstract

The hippocampus is critical for rapid acquisition of many forms of memory, although the circuit-level mechanisms through which the hippocampus rapidly consolidates novel information are unknown. Here, the activity of large ensembles of hippocampal neurons in adult male Long-Evans rats was monitored across a period of rapid spatial learning to assess how the network changes during the initial phases of memory formation and retrieval. In contrast to several reports, the hippocampal network did not display enhanced representation of the goal location via accumulation of place fields or elevated firing rates at the goal. Rather, population activity rates increased globally as a function of experience. These alterations in activity were mirrored in the power of the theta oscillation and in the quality of theta sequences, without preferential encoding of paths to the learned goal location. In contrast, during brief “offline” pauses in movement, representation of a novel goal location emerged rapidly in ripples, preceding other changes in network activity. These data demonstrate that the hippocampal network can facilitate active navigation without enhanced goal representation during periods of active movement, and further indicate that goal representation in hippocampal ripples before movement onset supports subsequent navigation, possibly through activation of downstream cortical networks.SIGNIFICANCE STATEMENTUnderstanding the mechanisms through which the networks of the brain rapidly assimilate information and use previously learned knowledge are fundamental areas of focus in neuroscience. In particular, the hippocampal circuit is a critical region for rapid formation and use of spatial memory. In this study, several circuit-level features of hippocampal function were quantified while rats performed a spatial navigation task requiring rapid memory formation and use. During periods of active navigation, a general increase in overall network activity is observed during memory acquisition, which plateaus during memory retrieval periods, without specific enhanced representation of the goal location. During pauses in navigation, rapid representation of the distant goal well emerges before either behavioral improvement or changes in online activity.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke

Publisher

Society for Neuroscience

Subject

General Neuroscience

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3