Phosphorylation of RPT6 Controls Its Ability to Bind DNA and Regulate Gene Expression in the Hippocampus of Male Rats during Memory Formation

Author:

Farrell Kayla,Auerbach Aubrey,Musaus Madeline,Navabpour Shaghayegh,Liu Catherine,Lin Yu,Xie Hehuang,Jarome Timothy J.

Abstract

Memory formation requires coordinated control of gene expression, protein synthesis, and ubiquitin–proteasome system (UPS)-mediated protein degradation. The catalytic component of the UPS, the 26S proteasome, contains a 20S catalytic core surrounded by two 19S regulatory caps, and phosphorylation of the 19S cap regulatory subunit RPT6 at serine 120 (pRPT6-S120) has been widely implicated in controlling activity-dependent increases in proteasome activity. Recently, RPT6 was also shown to act outside the proteasome where it has a transcription factor-like role in the hippocampus during memory formation. However, little is known about the proteasome-independent function of “free” RPT6 in the brain or during memory formation and whether phosphorylation of S120 is required for this transcriptional control function. Here, we used RNA-sequencing along with novel genetic approaches and biochemical, molecular, and behavioral assays to test the hypothesis that pRPT6-S120 functions independently of the proteasome to bind DNA and regulate gene expression during memory formation. RNA-sequencing following siRNA-mediated knockdown of free RPT6 revealed 46 gene targets in the dorsal hippocampus of male rats following fear conditioning, where RPT6 was involved in transcriptional activation and repression. Through CRISPR-dCas9-mediated artificial placement of RPT6 at a target gene, we found that RPT6 DNA binding alone may be important for altering gene expression following learning. Further, CRISPR-dCas13-mediated conversion of S120 to glycine on RPT6 revealed that phosphorylation at S120 is necessary for RPT6 to bind DNA and properly regulate transcription during memory formation. Together, we reveal a novel function for phosphorylation of RPT6 in controlling gene transcription during memory formation.

Funder

HHS | NIH | National Institute of Mental Health

HHS | NIH | National Institute on Aging

Publisher

Society for Neuroscience

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3