Severity-Dependent Interhemispheric White Matter Connectivity Predicts Poststroke Neglect Recovery

Author:

Kaufmann Brigitte C.ORCID,Pastore-Wapp ManuelaORCID,Bartolomeo PaoloORCID,Geiser NoraORCID,Nyffeler ThomasORCID,Cazzoli DarioORCID

Abstract

Left-sided spatial neglect is a very common and challenging issue after right-hemispheric stroke, which strongly and negatively affects daily living behavior and recovery of stroke survivors. The mechanisms underlying recovery of spatial neglect remain controversial, particularly regarding the involvement of the intact, contralesional hemisphere, with potential contributions ranging from maladaptive to compensatory. In the present prospective, observational study, we assessed neglect severity in 54 right-hemispheric stroke patients (32 male; 22 female) at admission to and discharge from inpatient neurorehabilitation. We demonstrate that the interaction of initial neglect severity and spared white matter (dis)connectivity resulting from individual lesions (as assessed by diffusion tensor imaging, DTI) explains a significant portion of the variability of poststroke neglect recovery. In mildly impaired patients, spared structural connectivity within the lesioned hemisphere is sufficient to attain good recovery. Conversely, in patients with severe impairment, successful recovery critically depends on structural connectivity within the intact hemisphere and between hemispheres. These distinct patterns, mediated by their respective white matter connections, may help to reconcile the dichotomous perspectives regarding the role of the contralesional hemisphere as exclusively compensatory or not. Instead, they suggest a unified viewpoint wherein the contralesional hemisphere can – but must not necessarily – assume a compensatory role. This would depend on initial impairment severity and on the available, spared structural connectivity. In the future, our findings could serve as a prognostic biomarker for neglect recovery and guide patient-tailored therapeutic approaches.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Agence Nationale de la Recherche through

Publisher

Society for Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3