Random Forest of Interaction Trees for Estimating Individualized Treatment Regimes with Ordered Treatment Levels in Observational Studies

Author:

Thorp Justin,Levine Richard A.ORCID,Li Luo,Fan Juanjuan

Abstract

Traditional methods for evaluating a potential treatment have focused on the average treatment effect. However, there exist situations where individuals can experience significantly heterogeneous responses to a treatment. In these situations, one needs to account for the differences among individuals when estimating the treatment effect. Li et al. (2022) proposed a method based on random forest of interaction trees (RFIT) for a binary or categorical treatment variable, while incorporating the propensity score in the construction of random forest. Motivated by the need to evaluate the effect of tutoring sessions at a Math and Stat Learning Center (MSLC), we extend their approach to an ordinal treatment variable. Our approach improves upon RFIT for multiple treatments by incorporating the ordered structure of the treatment variable into the tree growing process. To illustrate the effectiveness of our proposed method, we conduct simulation studies where the results show that our proposed method has a lower mean squared error and higher optimal treatment classification, and is able to identify the most important variables that impact the treatment effect. We then apply the proposed method to estimate how the number of visits to the MSLC impacts an individual student’s probability of passing an introductory statistics course. Our results show that every student is recommended to go to the MSLC at least once and some can drastically improve their chance of passing the course by going the optimal number of times suggested by our analysis.

Publisher

School of Statistics, Renmin University of China

Subject

Industrial and Manufacturing Engineering

Reference18 articles.

1. A comparative study of subgroup identification methods for differential treatment effect: Performance metrics and recommendations;Statistical Methods in Medical Research,2017

2. Random forests;Machine Learning,2001

3. BART: Bayesian additive regression trees;The Annals of Applied Statistics,2010

4. Qualitative interaction trees: A tool to identify qualitative treatment-subgroup interactions;Statistics in Medicine,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3