Abstract
Research has continued to shed light on the extent and significance of gender disparity in social, cultural and economic spheres. More recently, computational tools from the data science and Natural Language Processing (NLP) communities have been proposed for measuring such disparity at scale using empirically rigorous methodologies. In this article, we contribute to this line of research by studying gender disparity in 2,443 copyright-expired literary texts published in the pre-modern period, defined in this work as the period ranging from the beginning of the nineteenth through the early twentieth century. Using a replicable data science methodology relying on publicly available and established NLP components, we extract three different gendered character prevalence measures within these texts. We use an extensive set of statistical tests to robustly demonstrate a significant disparity between the prevalence of female characters and male characters in pre-modern literature. We also show that the proportion of female characters in literary texts significantly increases in female-authored texts compared to the same proportion in male-authored texts. However, regression-based analysis shows that, over the 120 year period covered by the corpus, female character prevalence does not change significantly over time, and remains below the parity level of 50%, regardless of the gender of the author. Qualitative analyses further show that descriptions associated with female characters across the corpus are markedly different (and stereotypical) from the descriptions associated with male characters.
Publisher
School of Statistics, Renmin University of China
Reference64 articles.
1. Methodological considerations in gender studies;Interdisciplinary Studies in the Humanities,2016
2. Teoria statistica delle classi e calcolo delle probabilita;Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze,1936
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. NLP Pipeline for Gender Bias Detection in Portuguese Literature;Anais do LI Seminário Integrado de Software e Hardware (SEMISH 2024);2024-07-21