Dynamic Network Poisson Autoregression with Application to COVID-19 Count Data

Author:

Asai Manabu,Chu Amanda M. Y.ORCID,So Mike K. P.ORCID

Abstract

There is growing interest in accommodating network structure in panel data models. We consider dynamic network Poisson autoregressive (DN-PAR) models for panel count data, enabling their use in regard to a time-varying network structure. We develop a Bayesian Markov chain Monte Carlo technique for estimating the DN-PAR model, and conduct Monte Carlo experiments to examine the properties of the posterior quantities and compare dynamic and constant network models. The Monte Carlo results indicate that the bias in the DN-PAR models is negligible, while the constant network model suffers from bias when the true network is dynamic. We also suggest an approach for extracting the time-varying network from the data. The empirical results for the count data for confirmed cases of COVID-19 in the United States indicate that the extracted dynamic network models outperform the constant network models in regard to the deviance information criterion and out-of-sample forecasting.

Publisher

School of Statistics, Renmin University of China

Reference51 articles.

1. Sequential Bayesian analysis of multivariate count data;Bayesian Analysis,2018

2. A multivariate statistical approach to predict Covid-19 count data with epidemiological interpretation and uncertainty quantification;Statistics in Medicine,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3