Milk Urea Content and δ13C as Potential Tool for Differentiation of Milk from Organic and Conventional Low- and High-Input Farming Systems

Author:

Zhukova Yaroslava,Petrov Pylyp,Demikhov Yuriy,Mason Alex,Korostynska Olga

Abstract

The influence of farming type (conventional or organic) and production system (low-and high-input) on various quality characteristics of milk have been in the focus of studies over the last decade. The aim of this work was to evaluate the impact of different dairy management and production systems on carbon stable isotopes ratio (δ13C) and milk urea content. The samples of raw milk were collected each two weeks at certified organic high-input and low-input farms, conventional high-input and low-input farms in late indoor period and outdoor period. Data analysis showed clear difference between milk from organic high- and low-input farms with non-overlapping range between -22.90 ‰ and -24.70‰ for δ13С in protein fraction (equal 1.80‰) and between -25.90‰ and -28.20‰ (equal 2.30‰) for δ13С in fat fraction independently from season factor, as for Δδ13С (protein-fat) values in milk from high-input (1.50-3.00‰) and low-input (3.20-6.30‰) organic farms. Analysis of correlation between δ13С in protein fraction and milk urea content values showed that during late indoor period the most significant difference was detected between milk from organic low-input and conventional high-input farms (5.85‰ for δ13С in protein fraction and 4.65 mg/100 g of milk urea content). During outdoor period, the non-overlapping range was established for low-input and high-input organic farms (3.40‰ for δ13С in protein fraction and 10.77 mg/100 g of milk urea content). Results of δ13С values in fat and protein milk fractions, as combination of δ13С in protein fraction and milk urea content could be a potential tool for the distinguish of milk from different farming types, based on different feed composition.

Publisher

Turkish Science and Technology Publishing (TURSTEP)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3