Pulmonary Dendritic Cells in Lungs of Preterm Infants: Neglected Participants in Bronchopulmonary Dysplasia?

Author:

De Paepe Monique E.12,Hanley L. Corey12,Lacourse Zacharie1,Pasquariello Terese,Mao Quanfu12

Affiliation:

1. Department of Pathology, Women and Infants Hospital, Providence, RI, USA

2. Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, USA

Abstract

Preterm infants are at risk for bronchopulmonary dysplasia (BPD), a chronic lung disease characterized by disrupted alveolar remodeling and microvascular dysangiogenesis. The pathogenesis of BPD is multifactorial, with contributions from antenatal and/or postnatal infection and inflammation. The potential role of dendritic cells, critical immune regulatory cells with potent angiogenic activities, remains undetermined. We studied the prevalence and topography of dendritic cells in postmortem lungs of short- and long-term ventilated preterm infants born between 23 and 29 weeks in gestation. Controls were age-matched infants who had lived less than 12 hours. Dendritic cells were identified by anti-DC-SIGN immunohistochemistry and were co-localized with endothelial and smooth muscle cells by double immunofluorescence. Lungs of early and late control infants without evidence of antenatal infection contained scattered DC-SIGN-positive dendritic cells in the peripheral lung parenchyma. Lungs of early control infants with a history of chorioamnionitis/antenatal infection and lungs of short- or long-term ventilated preterm infants showed a dramatic (more than 3-fold) increase in dendritic cells. Double labeling highlighted a close association between dendritic cells and small- or medium-sized pulmonary vessels. In conclusion, we demonstrated that dendritic cells are an integral component of normal postcanalicular lung development. Antenatal infection and ventilation/BPD are associated with significant pulmonary recruitment of dendritic cells. The recently described angiogenic effects of dendritic cells and their intimate association with the pulmonary microvasculature indicate that dendritic cells may participate in BPD-associated dysangiogenesis. Elucidation of the role of this immunovascular axis may lead to novel therapeutic approaches to BPD.

Publisher

SAGE Publications

Subject

General Medicine,Pathology and Forensic Medicine,Pediatrics, Perinatology, and Child Health

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3