Optimization Method of Multi-parameter Coupling for a Hydraulic Rolling Reshaper Based on Factorial Design

Author:

Li HongfeiORCID,Luo Min,Xu Tingting,Li Qiaozhen,Hou Yanming

Abstract

A hydraulic rolling reshaper is an advanced shaping technology with superior protection for casings, and the structural parameters of the reshaper affect its shaping effect on deformed casing directly. To improve the shaping capacity of the reshaper, a multi-parameter coupling optimization method of hydraulic rolling reshaper is proposed to optimize the design of the factors with significant influence under the premise of screening multi-structural parameters. In this paper, according to the working principle of the reshaper, considering the contact nonlinearity between the hydraulic rolling reshaper and deformed casing, as well as the material nonlinearity of the casing, a parametric finite element model of the hydraulic rolling reshaper repairing the shrinkage deformation of casings was developed. The remarkable factors were screened by factorial design, the sample points were generated by optimal Latin hyper-cube design (OLHD), and the response surface models were established by stepwise regression. Therefore, with the maximum plastic deformation of casings as the objective function, the maximum equivalent stress, residual stress, and the plastic deformation of casings as the constrained conditions, an optimized mathematical model for a reshaper was constructed, and the genetic algorithm (GA) is performed to obtain the optimal combination of parameters. The results showed that the optimal reshaper made the shaping process safe and effective, the plastic deformation of casings after single shaping was increased by 11.38 %, and the shaping effect was better (96.48 %), which can effectively improve the safety performance and shaping ability of the reshaper.

Publisher

Faculty of Mechanical Engineering

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Double-Sided Upsetting of the End Thickenings on Rod Blanks;Strojniški vestnik - Journal of Mechanical Engineering;2024-07-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3