A Study Using the Hybrid Fuzzy AHP&TOPSIS Method in the Conversion of a LEED-Certified Education Building into a Nearly Zero-Energy Building in a Cold Climate

Author:

Celik Ali,Sahin Bayram,Manay Eyüphan,Balin Abit

Abstract

In cold climate regions, it is essential to design and manufacture energy-efficient buildings for both economic benefits and the reduction of environmental effects by controlling energy consumption. This study aimed to increase the cost-effective energy performance and approach the nearly zero energy building (nZEB) by taking the leadership in energy and environmental design (LEED) in the cold climate region of Turkey as a model. The results of single and mixed scenarios that increase energy efficiency were determined by making energy modelling of the building. By applying single and mixed energy efficiency scenarios, a maximum saving of 85.60 % per year in terms of primary energy, an improvement of 83.6 % in terms of global costs and a reduction of 86.4 % in CO2 emissions were obtained compared to the reference building. The payback period of the scenarios is between 3.8 years and 14.53 years. The most suitable single and mixed scenario was determined by a systematic hybrid model, in which the fuzzy analytical hierarchy process (FAHP) and technique for order of preference by similarity to ideal solution (TOPSIS) methods among multi-criteria decision-making methods are used together. The results showed that economic criteria were decisive in determining the most suitable scenario for cold climate regions. The results of this study revealed that there can be a realistic decision-support model for the creation of energy-efficient buildings for countries without the need for foreign certification.

Publisher

Faculty of Mechanical Engineering

Subject

Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3