Fuzzy Logic Approach to Predict Surface Roughness in Powder Mixed Electric Discharge Machining of Titanium Alloy

Author:

Rodić DraganORCID,Gostimirović Marin,Sekulić Milenko,Savković Borislav,Aleksić Andjelko

Abstract

This study deals with fuzzy logic based modeling and parametric analysis in powder mixed electrical discharge machining of titanium alloys. The central composition plan was used to design the experiments considering four parameters, namely discharge current, pulse duration, duty cycle as well as graphite powder concentration. All experiments were performed with different parameter combinations and the performance, i.e., surface roughness, was evaluated. The adaptive neuro-fuzzy inference system was used to understand and define the input-output relationship. The experimental results and the model results were compared and it was found that the results accurately predicted the reactions in the erosion of titanium alloys. In addition, the model was verified using data that had not participated in the training of the model, with an error of about 10%. In addition, a fuzzy plot was used to analyze the influence of input parameters on surface roughness. It was found that the discharge current was the most important influencing parameter. Additional experiments proved the positive effect of graphite powder, which reduced the surface roughness by 27 %.

Publisher

Faculty of Mechanical Engineering

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3