Thermal Evaluation of Multilayer Wall with a Hat-Stringer in Aircraft Design

Author:

Brazhenko VolodymyrORCID,Qiu Yibo,Cai Jiancheng,Wang Dongyun

Abstract

In the present paper, we investigate the heat transfer through the multilayer wall of aircraft cabins, as this process influences the comfortable conditions created for most passengers and crew members. The numerical modelling results and calculation of a multilayer wall with a hat-stringer in aircraft design are presented. The thermal characteristics evaluation and their relationship with the design parameters were made. The effect of the air layer size on the overall thermal resistance of the multilayer wall, taking into account the geometrical dimensions and properties of the surfaces, was studied. The relative temperature field in the insulation layer, which crosses the hat-stringer elements of the fuselage frame, is calculated. It is shown that the insufficient thickness of the layer of thermal insulation material in the zone of the hat-stringer at low temperatures leads to a significant deterioration in the multilayer wall characteristics, which can worsen the microclimatic conditions inside the aircraft cabin.

Publisher

Faculty of Mechanical Engineering

Subject

Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3