Using Multi-Objective Bat Algorithm for Solving Multi-Objective Non-linear Programming Problem

Author:

Rajwan Hamood Sheah ,Iraq T. Abbas

Abstract

Human beings are greatly inspired by nature. Nature has the ability to solve very complex problems in its own distinctive way. The problems around us are becoming more and more complex in the real time and at the same instance our mother nature is guiding us to solve these natural problems. Nature gives some of the logical and effective ways to find solutions to these problems. Nature acts as an optimized source for solving the complex problems.  Decomposition is a basic strategy in traditional multi-objective optimization. However, it has not yet been widely used in multi-objective evolutionary optimization.    Although computational strategies for taking care of Multi-objective Optimization Problems (MOPs) have been accessible for a long time, the ongoing utilization of Evolutionary Algorithm (EAs) to such issues gives a vehicle to tackle extremely enormous scope MOPs. MOBATD is a multi-objective bat algorithm that incorporates the dominance concept with the decomposition approach. Whilst decomposition simplifies the MOP by rewriting it as a set of Tchebycheff Approach, solving these problems simultaneously, within the BAT framework, might lead to premature convergence because of the leader selection process which uses the Tchebycheff Approach as a criterion. Dominance plays a major role in building the leaders archive, allowing the selected leaders to cover less dense regions while avoiding local optima and resulting in a more diverse approximated Pareto front. The results from 5 standard MOPs show that the MOBATD outperforms some developmental methods based on decomposition. All the results were achieved by MATLAB (R2017b).

Publisher

University of Baghdad College of Science

Subject

General Biochemistry, Genetics and Molecular Biology,General Chemistry,General Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3