Abstract
A uniaxial micro-electro-mechanical systems (MEMS) micro-vibration mirror can be used to construct a new type of fringe projection profilometry (FPP) system. In FPP system calibration, some pixels may be calibrated worse than other pixels due to various error sources, which will affect the final reconstruction accuracy. In addition, there are some difficulties in calibrating the MEMS-based system because a projector using the uniaxial vibration mirror does not have focusing optics and can only project unidirectional fringes. In this paper, we developed an FPP system using a uniaxial MEMS micro-vibration mirror. To solve the calibration problems, we propose a calibration model suitable for the MEMS-based system and a pixel refinement method. These pixels with relatively large calibration errors are called outlier-pixels, which will significantly increase the error of the following 3D mapping. Therefore, the pixel refinement method classifies all pixels based on a frequency distribution histogram of calibration errors during calibration and prevents outlier-pixels from participating in the following 3D mapping. The experimental results show that the proposed method can improve the accuracy of 3D reconstruction, and the feasibility of the self-developed system is verified.
Funder
Start-up Funding of Tsinghua Shenzhen International Graduate School, Tsinghua University
Shenzhen Stable Supporting Program
Subject
Atomic and Molecular Physics, and Optics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献