Affiliation:
1. West Nottingham Academy
2. CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology
Abstract
Micromanipulation and biological, materials science, and medical applications often require controlling or measuring the forces exerted on small objects. Based on the high linearity and sensitivity of OAM beams in the sensing field, this article proposes for the first time to apply OAM beams to force sensing. In this paper, a fiber optic force sensing technology based on the intensity distribution change of orbital angular momentum (OAM) mode is proposed and realized. This technique detects the magnitude of the external force applied to the fiber by exciting the OAM mode with a topological charge 3, thereby tracking changes in light intensity caused by mode coupling. Applying this technique to force measurement, we have experimentally verified that when the sensor is subjected to a force in the range of 0mN to 10mN, the change in speckle light intensity at the sensor output has a good linear relationship with the force. Meanwhile, theoretical analysis and experimental results indicate that compared with previous force sensing methods, this sensing technology has a simple structure, is easy to implement, has good stability, and has practical application potential.
Subject
Atomic and Molecular Physics, and Optics,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献