Abstract
An all-solid-state single-frequency continuous-wave (CW) 355 nm ultraviolet (UV) laser based on a dispersion-compensated doubly resonant resonator is presented in this Letter that is achieved by employing homemade high-stability all-solid-state frequency-correlated dual-wavelength lasers at 1064 and 532 nm and a temperature-controlled type-I critical-phase-matching LiB3O5 (LBO) to act as the fundamental laser source and the nonlinear medium, respectively. The frequency-correlated dual-wavelength single-frequency CW laser supplies the fundamental frequency 1064 and 532 nm lasers with good frequency synchronization. And the temperature-controlled LBO acts as the dispersion-compensation element to realize double resonance of the 1064 and 532 nm laser. Finally, a 4.2 W high-stability 355 nm UV laser is experimentally obtained, and the corresponding total conversion efficiency is up to 20.5%. To the best of our knowledge, this is the highest power reported about single-frequency CW 355 nm UV laser. The presented method can pave a way to develop a compact single-frequency 355 nm UV laser with high output power.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Research Project Supported by Shanxi Scholarship Council of China
Fund for Shanxi "1331 Project" Key Subjects Construction
Scientific and Technological Innovation Program of Higher Education Institutions in Shanxi
First Lab-National Innovation Center (Shanxi) Science and Technology Innovation Project
Special Fund for Science and Technology Innovation Teams of Shanxi Province
Applied Basic Research Project of Shanxi Province, China