Generation of multi-channel perfect vortex beams with the controllable ring radius and the topological charge based on an all-dielectric transmission metasurface

Author:

Liu Yue1,Zhou Chengxin1,Guo Kuangling1,Wei Zhongchao1ORCID,Liu Hongzhan1ORCID

Affiliation:

1. South China Normal University

Abstract

The perfect vortex (PV) beam, characterized by carrying orbital angular momentum and a radial electric intensity distribution independent of the topological charge, has important applications in optical communication, particle manipulation, and quantum optics. Conventional methods of generating PV beams require a series of bulky optical elements that are tightly collimated with each other, adding to the complexity of optical systems. Here, making the amplitude of transmitted co-polarized and cross-polarized components to be constant, all-dielectric transmission metasurfaces with superimposed phase profiles integrating spiral phase plate, axicon and Fourier lens are constructed based on the phase-only modulation method. Using mathematical derivation and numerical simulation, multi-channel PV beams with controllable annular ring radius and topological charge are realized for the first time under circularly polarized light incidence combining the propagation phase and geometric phase. Meanwhile, perfect vector vortex beams are produced by superposition of PV beams under the incidence of left-handed circularly polarized and right-handed circularly polarized lights, respectively. This work provides a new perspective on generating tailored PV beams, increasing design flexibility and facilitating the construction of compact, integrated, and versatile nanophotonics platforms.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong, China

Science and Technology Program of Guangzhou

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3