Reconstruction of optical parameter fields in graded refractive index media based on laser beam deflection and attenuation measurement

Author:

Wei Linyang1,Li Guojun1,Guo Xin2,Sun Shuangcheng3ORCID

Affiliation:

1. Northeastern University

2. Harbin Boiler Company Limited

3. Chongqing University

Abstract

Graded refractive index media (GRIM) are widely applied as special functional materials in many practical engineering fields. Accurate knowledge of the optical parameters is key to using GRIM. In this study, simultaneous reconstruction of the refractive index and absorption coefficient fields of GRIM based on laser beam deflection and attenuation measurement is studied. A set of rays from the given positions along the given directions transits GRIM, and the deflection and attenuation of rays at the exit boundary are recorded as measurement information. A two-step reconstruction strategy is proposed to reconstruct the refractive index and absorption coefficient fields. First, the refractive index field is reconstructed from the ray deflection measurement information. Then, the ray trajectory can be obtained by the Runge–Kutta ray tracing technique based on the reconstructed refractive index field. Afterwards, the absorption coefficient field is reconstructed from the ray attenuation measurement according to the Bouguer law. The regularization technique based on the generalized Gaussian Markov random field model is employed to improve the reconstruction results. All test results show that the two-step reconstruction strategy is accurate and can be regarded as a promising reconstruction technique.

Funder

National Natural Science Foundation of Liaoning

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

National Key Research and Development Program of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3