150 Gbit/s 1 km high-sensitivity FSO communication outfield demonstration based on a soliton microcomb

Author:

Jia Shuaiwei12,Xie Zhuang12,Shao Wen12,Wang Yang12,He Yuanchen1,Zhang Dongquan1,Liao Peixuan12,Wang Weiqiang1ORCID,Gao Duorui12,Wang Wei1,Xie Xiaoping12

Affiliation:

1. Xi’an Institute of Optics and Precision Mechanics

2. University of Chinese Academy of Sciences

Abstract

A high-sensitivity and large-capacity free space optical (FSO) communication scheme based on the soliton microcomb (SMC) is proposed. Using ultra-large bandwidth stabilized SMC with a frequency interval of 48.97 GHz as the laser source, 60 optical wavelengths modulated by 2.5 Gbit/s 16-Pulse position modulation (PPM) are transmitted in parallel. A corresponding outfield high-sensitivity 150 Gbit/s FSO communication experiment based on the SMC was carried out with 1 km space distance. Our experimental results show that the best sensitivity of the single comb wavelength which has higher OSNR can reach −52.62 dBm, and the difference is only 1.38 dB from the theoretical limit under the BER of 1 × 10−3 without forward error correction (FEC). In addition, at BER of 1 × 10−3, 16-PPM has a higher received sensitivity of 6.73dB and 3.72dB compared to on-off keying (OOK) and differential phase shift keying (DPSK) respectively. Meanwhile, taking the advantage of multi-channel SMC, 60 × 2.5 Gbit/s can achieve 150 Gbit/s large-capacity free-space transmission. For comparison, commercially available single-wavelength laser based FSO communication system have also been performed in the outfield. The outfield experimental results demonstrated the feasibility of high-sensitivity, large-capacity PPM FSO communication based on SMCs and provided a new perspective for the future development of large-capacity, long-haul FSO communication.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Comparison of OOK and PPM Modulation Schemes in FSO Links Under Various Atmospheric Conditions;Lecture Notes in Electrical Engineering;2024

2. Performance analysis of OOK and PPM modulation schemes in MIMO-FSO links under gamma-gamma atmospheric turbulence;Environmental Effects on Light Propagation and Adaptive Systems VI;2023-10-19

3. Massively Parallel Free Space Optical Communications Based on Soliton Microcomb;2023 11th International Conference on Intelligent Computing and Wireless Optical Communications (ICWOC);2023-06-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3