Transfer-learning-based multi-wavelength laser sensor for high fidelity and real-time monitoring of ambient temperature and humidity

Author:

Ma LiuhaoORCID,Hu Weifan,Wang Wei,Wang Yu1ORCID

Affiliation:

1. Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory

Abstract

Multi-wavelength laser absorption spectroscopy has the advantages of superior sensitivity, accuracy, and robustness for gas sensing applications, offering an opportunity for the development of high-performance laser-based hygrothermographs. However, accurate and fast determination of gas parameters from multiple spectral features can be quite challenging in the presence of large numbers of features, measurement noise, and increasing demands for real-time measurements. To address this challenge, we propose a transfer-learning-based multi-wavelength laser absorption sensor for the quantitative and simultaneous measurement of temperature and concentration of water vapor, with a focus on real-time monitoring of ambient temperature and relative humidity (RH). A spectral simulation based on the most-updated HITRAN database was employed as the dataset for model pre-training and transfer learning. The experimental dataset was obtained from absorption measurements using a distributed feedback laser that probed multiple water absorption features within the band of 7179−7186cm−1. To evaluate the sensor performance, mean absolute error, error distribution, and linearity were selected. In the presence of an insufficient experimental dataset for direct data training, the proposed transfer learning approach outperformed the traditional deep learning method with a lower prediction error of 0.14°C and 0.42% for temperature and RH, respectively, as compared to the values of 0.84°C and 0.66% obtained using the traditional deep learning method. Finally, the fast data post-processing performance of the proposed transfer learning approach was demonstrated in a field test against the conventional baseline fitting method.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3