Measuring intraocular pressure with OCT: the first approach

Author:

Niemczyk Marcela1ORCID,Iskander D. Robert1

Affiliation:

1. Wroclaw University of Science and Technology

Abstract

The variability of corneal OCT speckle statistics is indirectly related to changes in corneal microstructure, which may be induced by intraocular pressure (IOP). A new approach is considered, which attempts to estimate IOP based on corneal speckle statistics in OCT images. An area (A) under trajectories of contrast ratio with respect to stromal depth was calculated. The proposed method was evaluated on OCT images from the ex-vivo study on porcine eyeballs and in-vivo study on human corneas. A statistically significant multivariate linear regression model was obtained from the ex-vivo study: IOP = 0.70 · A − 6.11, in which IOP was precisely controlled in the anterior chamber. The ex-vivo study showed good correlation between A and IOP (R = 0.628, at the least) whereas the in-vivo study showed poor correlation between A and clinical air-puff tonometry based estimates of IOP (R = 0.351, at the most), indicating substantial differences between the two studies. The results of the ex-vivo study show the potential for OCT speckle statistics to be utilized for measuring IOP using static corneal imaging that does not require corneal deformation. Nevertheless, further work is needed to validate this approach in living human corneas.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3