Simulation Study of Deposition Parameters for Elliptical-Shaped Preforms by VAD for Polarization-Maintaining Fibers

Author:

Fujiwara Eric,Ono Eduardo,Suzuki Carlos K.

Abstract

A novel fabrication method of elliptical-shaped preforms for polarization-maintaining fibers, developed using the VAD technology and based on the variation of the perform rotation velocity from zero to a maximum velocity in repeated cycles of 180°, allows modifying and controlling the preform geometry by choosing the process parameters, such as the maximum rotation velocity and the delay time on zero velocity positions. The effect of each process variable was studied through a mathematical modeling and simulation of the methodology, comprising a simplified model of the soot deposition process. Results demonstrated that preforms with high elllipticity can be obtained by increasing the delay time or decreasing the maximum rotation velocity. It was also observed that the effect of the delay time is more noticeable on the preform geometry than the contribution of maximum velocity. These facts were confirmed when compared to real deposition results, using a VAD chamber with gases fluxes set to 2.33×10-6 m3/s (SiCl4) and 0.8×10-6 m3/s (GeCl4), and setting the burner-target angle to a high deposition rate condition. It is expected that the improvement of the mathematical model can be very useful in order to determine the process conditions necessary to achieve any desired preform geometry, even before the deposition stage.

Publisher

Optica Publishing Group

Reference5 articles.

1. The development of Honda humanoid robot;Hirai,1998

2. Polarization-maintaining fibers and their applications

3. Vitreous silica processing by vapor phase deposition for optical fiber preform

4. Elliptical nucleous optical fiber design technique for advanced sensors;Fujiwara,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3