Deep learning-based adaptive optics for light sheet fluorescence microscopy

Author:

Rai Mani Ratnam,Li ChenORCID,Ghashghaei H. Troy1,Greenbaum AlonORCID

Affiliation:

1. North Carolina State University

Abstract

Light sheet fluorescence microscopy (LSFM) is a high-speed imaging technique that is often used to image intact tissue-cleared specimens with cellular or subcellular resolution. Like other optical imaging systems, LSFM suffers from sample-induced optical aberrations that decrement imaging quality. Optical aberrations become more severe when imaging a few millimeters deep into tissue-cleared specimens, complicating subsequent analyses. Adaptive optics are commonly used to correct sample-induced aberrations using a deformable mirror. However, routinely used sensorless adaptive optics techniques are slow, as they require multiple images of the same region of interest to iteratively estimate the aberrations. In addition to the fading of fluorescent signal, this is a major limitation as thousands of images are required to image a single intact organ even without adaptive optics. Thus, a fast and accurate aberration estimation method is needed. Here, we used deep-learning techniques to estimate sample-induced aberrations from only two images of the same region of interest in cleared tissues. We show that the application of correction using a deformable mirror greatly improves image quality. We also introduce a sampling technique that requires a minimum number of images to train the network. Two conceptually different network architectures are compared; one that shares convolutional features and another that estimates each aberration independently. Overall, we have presented an efficient way to correct aberrations in LSFM and to improve image quality.

Funder

National Institute of Neurological Disorders and Stroke

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3