Watt-level beam combined diode laser systems in a chip-scale hybrid photonic platform

Author:

Zeng Siwei1ORCID,Zhao Xiaolei1,Zhu Yeyu1,Sweatt Lance1,Zhu Lin1

Affiliation:

1. Clemson University

Abstract

Scaling up the power of on-chip diode lasers is of great importance for many emerging applications, such as integrated nonlinear optics, remote sensing, free space communication, infrared countermeasure, and light detection and ranging (LIDAR). In this manuscript, we introduce and demonstrate photonic integrated circuits (PIC) based beam combining methods to create power scalable, integrated direct diode laser systems. Traditional laser beam combining, including coherent beam combining (CBC) and wavelength beam combining (WBC), usually requires free space or fiber optical components, leading to bulky and complex systems. Instead, PIC based beam combining methods can greatly reduce the cost, size, weight, and power consumption (CSWaP) of next generation direct diode laser systems. We experimentally demonstrate four channel chip-scale CBC and WBC with watt-level on-chip power by using III/V-Si3N4 hybrid integration. Our results show that PIC based beam combining is very suitable for power scaling in a chip-scale platform.

Funder

Army Research Office

Office of Naval Research

National Science Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3