Abstract
In recent studies, visible light communication (VLC) has been predicted to be a prospective technique in the future 6G communication systems. To suit the trend of exponentially growing connectivity, researchers have intensively studied techniques that enable multiple access (MA) in VLC systems, such as the MIMO system based on LED devices to support potential applications in the Internet of Things (IoT) or edge computing in the next-generation access network. However, their transmission rate is limited due to the intrinsic bandwidth of LED. Unfortunately, the majority of visible light laser communication (VLLC) research with beyond 10 Gb/s data rates concentrates on point-to-point links, or using discrete photodetector (PD) devices instead of an integrated array PD. In this paper, we demonstrated an integrated PD array device fabricated with a Si-substrated GaN/InGaN multiple-quantum-well (MQW) structure, which has a 4×4 array of 50 μm×50 μm micro-PD units with a common cathode and anode. This single-integrated array successfully provides access for two different transmitters simultaneously in the experiment, implementing a 2×2 MIMO-VLLC link at 405 nm. The highest data rate achieved is 13.2 Gb/s, and the corresponding net data rate (NDR) achieved is 12.27 Gb/s after deducing the FEC overhead, using 2.2 GHz bandwidth and superposed PAM signals. Furthermore, we assess the Huffman-coded coding scheme, which brings a fine-grain adjustment in access capacity and enhances the overall data throughput when the user signal power varies drastically due to distance, weather, or other challenges in the channel condition. As far as we know, this is the first demonstration of multiple visible light laser source access based on a single integrated GaN/InGaN receiver module.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献