Enhanced second-harmonic generation in strained germanium-on-insulator microdisks for integrated quantum photonic technologies

Author:

Tan James1,Shi Xuncheng,Lu KunzeORCID,Joo Hyo-Jun,Kim Youngmin,Chen Melvina1,Zhang Lin,Tan Chuan Seng,Lim Khee Yong1,Quek Elgin1,Nam Donguk

Affiliation:

1. GlobalFoundries Singapore Pte. Ltd.

Abstract

Quantum photonic circuits have recently attracted much attention owing to the potential to achieve exceptional performance improvements over conventional classical electronic circuits. Second-order χ(2) nonlinear processes play an important role in the realization of several key quantum photonic components. However, owing to their centrosymmetric nature, CMOS-compatible materials including silicon (Si) and germanium (Ge) traditionally do not possess the χ(2) response. Recently, second-harmonic generation (SHG) that requires the χ(2) response was reported in Ge, but no attempts at enhancing the SHG signal have been conducted and proven experimentally. Herein, we demonstrate the effect of strain on SHG from Ge by depositing a silicon nitride (Si3N4) stressor layer on Ge-on-insulator (GOI) microdisks. This approach allows the deformation of the centrosymmetric unit cell structure of Ge, which can further enhance the χ(2) nonlinear susceptibility for SHG emission. The experimental observation of SHG under femtosecond optical pumping indicates a clear trend of enhancement in SHG signals with increasing strain. Such improvements boost conversion efficiencies by 300% when compared to the control counterpart. This technique paves the way toward realizing a CMOS-compatible material with nonlinear characteristics, presenting unforeseen opportunities for its integration in the semiconductor industry.

Funder

Ministry of Education - Singapore

iGrant of Singapore

National Research Foundation Singapore

NRF-A*STAR Joint Grant

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3