Mass measurement under medium vacuum in optically levitated nanoparticles based on Maxwell speed distribution law

Author:

Chen Peng1,Li Nan1,Chen Xingfan1,Liang Tao2,He Peitong3,Wang Dawei1,Hu Huizhu13ORCID

Affiliation:

1. Zhejiang University

2. Zhejiang Provincial People's Hospital, Hangzhou Medical College

3. Zhejiang Lab

Abstract

As one of the directions of optical levitation technology, the mass measurement of micro-nano particles has always been a research hotspot in extremely weak mechanical measurements. When nanoscale particles are trapped in an optical trap, parameters such as density, diameter, and shape are unknown. Here we propose what we believe to be a new method to measure mass by fitting particle motion information to the Maxwell speed distribution law, with an accuracy better than 7% at 10 mbar. This method has the characteristics of requiring no external driving force, no precise natural frequency, no prior information such as density, and non-destructive testing within the medium vacuum range. With the increasing iterations, the uncertainty of mass measurement is reduced, and the accuracy of mass measurement of levitated particles is verified under multiple air pressures. It provides what we believe is a new method for the future non-destructive testing of nanoscale particles, and provides an apparently new way for the sensing measurement and metrology application fields of levitation dynamics systems.

Funder

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3