High-sensitivity optical fiber sensing based on a computational and distributed Vernier effect

Author:

Zhu ChenORCID,Huang Jie1ORCID

Affiliation:

1. Missouri University of Science and Technology

Abstract

This article reports a novel concept of computational microwave photonics and distributed Vernier effect for sensitivity enhancement in a distributed optical fiber sensor based on an optical carrier microwave interferometry (OCMI) system. The sensor system includes a Fabry-Perot interferometer (FPI) array formed by cascaded fiber in-line reflectors. Using OCMI interrogation, information on each of the interferometers (i.e., sensing interferometers) can be obtained, from which an array of reference interferometers can be constructed accordingly. By superimposing the interferograms of each sensing interferometer and its corresponding reference interferometer, distributed Vernier effect can be generated, so that the measurement sensitivity of each of the sensing interferometers can be amplified individually. This technique is achieved entirely in software without any physical modification to the system and negates the need to carefully fabricate the reference interferometer to obtain the desired magnification factor, as is often the case for traditional Vernier effect-based optical fiber sensors. Importantly, the reference interferometers can be flexibly constructed such that the magnification factor for each sensing interferometer can be precisely and easily controlled. The operating principle is illustrated in detail, followed by a proof of concept. The experimental results match well with theoretical predictions.

Funder

Research Initiation Project of Zhejiang Laboratory

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3