Abstract
Flexible control of light absorption within the lithography-free nanostructure is crucial for many polarization-dependent optical devices. Herein, we demonstrated that the lithography-free tunable absorber (LTA) can be realized by using two one-dimensional (1D) photonic crystals (PCs) consisting of an α-MoO3 layer at visible region. The two 1D PCs have different bulk band properties, and the topological interface state-induced light absorption enhancement of α-MoO3 can be realized as the α-MoO3 thin film is inserted at the interface between the two 1D PCs. The resonant cavity model is proposed to evaluate the anisotropic absorption performances of the LTA, and the results are in good agreement with those of the transfer matrix method (TMM). The absorption efficiency of the LTA can be tailored by the number of the period of the two PCs, and the larger peak absorption is the direct consequence of the larger field enhancement factor (FEF) within the α-MoO3 layer. In addition, near-perfect absorption can be achieved as the LTA is operated at the over-coupled resonance. By varying the polarization angle, the absorption channels can be selected and the reflection response can be effectively modulated due to the excellent in-plane anisotropy of α-MoO3.
Funder
Fundamental Research Funds for the Central Universities
Natural Science Foundation of Jiangsu Province
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献