Affiliation:
1. Friedrich-Alexander-Universität Erlangen-Nürnberg
Abstract
The high demand for fabricating microresonators with desired optical properties has led to various techniques to optimize geometries, mode structures, nonlinearities, and dispersion. Depending on applications, the dispersion in such resonators counters their optical nonlinearities and influences the intracavity optical dynamics. In this paper, we demonstrate the use of a machine learning (ML) algorithm as a tool to determine the geometry of microresonators from their dispersion profiles. The training dataset with ∼460 samples is generated by finite element simulations and the model is experimentally verified using integrated silicon nitride microresonators. Two ML algorithms are compared along with suitable hyperparameter tuning, out of which Random Forest yields the best results. The average error on the simulated data is well below 15%.
Funder
Max-Planck-Gesellschaft
H2020 Marie Skłodowska-Curie Actions
H2020 European Research Council
Subject
Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献