Abstract
We report on the waveguide-based generation of pulsed squeezed light at 795 nm, suitable for quantum enhanced measurements with rubidium atoms. Pulsed ultraviolet second harmonic light with a power of more than 400 mW is produced using a periodically poled LiNbO3 (PPLN) waveguide and is injected into another PPLN waveguide to generate quadrature squeezing. We find that the phase of the second harmonic pulse is shifted within a pulse, and we attribute the shift to heating due to blue-light induced infrared absorption (BLIIRA) from a comparison between the experiment and a numerical simulation. A squeezing level of −1.5(1) dB is observed in homodyne detection when we apply a linear phase shift to the local oscillator. The experiment and simulation imply that the squeezing level can be further improved by reducing BLIIRA.
Funder
MEXT Quantum Leap Flagship Program
Japan Society for the Promotion of Science
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献