Affiliation:
1. Technical University of Munich (TUM)
2. MTU Aero Engines AG
Abstract
A new calibration methodology for regenerated fiber Bragg grating (RFBG) temperature sensors up to 700 °C is proposed and demonstrated. A generalized, wavelength-dependent temperature calibration function is experimentally determined that describes the temperature-induced wavelength shifts for all RFBG sensor elements that are manufactured with the same fabrication parameters in the wavelength range from 1465 nm to 1605 nm. Using this generalized calibration function for absolute temperature measurements, each RFBG sensor element only needs to be calibrated at one reference temperature, representing a considerable simplification of the conventional calibration procedure. The new calibration methodology was validated with 7 RFBGs, and uncertainties were found to be compliant with those of Class 1 thermocouples (< ±1.5 K or < ±0.4% of the measured temperature). The proposed calibration technique overcomes difficulties with the calibration of spatially extended multipoint RFBG sensor arrays, where setting up an adequate calibration facility for large sensor fibers is challenging and costly. We assume that this calibration method can also be adapted to other types of FBG temperature sensors besides RFBGs. An accurate and practical calibration approach is essential for the acceptance and dissemination of the fiber-optic multipoint temperature sensing technology.
Funder
Bundesministerium für Wirtschaft und Energie
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献