Affiliation:
1. Wuhan Institute of Quantum Technology
Abstract
Towards next-generation intelligent display devices, it is urgent to find a cheap and convenient dynamic optical control method. Conventional gratings are widely used as cheap diffractive elements due to their effective optical control capabilities. However, they are limited within multi-function or complex optical modulation due to the lack of accurate control of the amplitude/phase at pixel-level. Here, a metasurface-assisted grating-modulation system is originally proposed to achieve switchable multi-fold meta-holographic dynamics. By incorporating metasurfaces with traditional gratings and tuning their relative coupling positions, the modulation system gains the optical modulation capability to realize complex optical functionalities. Specifically, by varying the grating periods/positions relative to the metasurface, 2–8 holographic image channels are programmed to be dynamically exhibited and switched. The proposed metasurface-assisted grating-modulation approach enjoys cost-effective convenience, strong encoding freedom, and facile operation, which promises programmable optical displays, optical sensors, optical information encryption/storage, etc.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Wuhan Knowledge Innovation Special Project
Natural Science Foundation of Jiangsu Province